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G. Pöplau∗, U. van Rienen, Rostock University, Germany
S. B. van der Geer, Eindhoven University of Technology, The Netherlands

M.J. de Loos, Pulsar Physics, Soest, The Netherlands

Abstract

The mesh-based 3D space-charge routine in the GPT
(General Particle Tracer, Pulsar Physics) code scales lin-
early with the number of particles in terms of CPU time
and allows a million particles to be tracked on a normal PC.
The crucial ingredient of the routine is a non-equidistant
multigrid Poisson solver to calculate the electrostatic po-
tential in the rest frame of the bunch. The solver has been
optimized for very high and very low aspect ratio bunches
present in state-of-the-art high-brightness electron acceler-
ators. In this paper, we introduce a new meshing strategy
based on a wavelet decomposition of the space-charge den-
sity. The numerical results show that the number of par-
ticles with large numerical error, typically located at the
edges of the bunch, can be reduced with this new approach
enormously.

INTRODUCTION

Progress in accelerator physics is measured in terms of
brightness, scaling as the peak current divided by the emit-
tance squared [8]. Space charge forces are the main limit-
ing factor to reach ever higher brightness, and therefore ex-
tremely important for the high-brightness accelerator com-
munity. The most demanding applications in this field are
SASE-FELs and colliders, such as currently under research
and construction at DESY [2, 3]. In these devices, space-
charge continues to play an important role to very high
energies due to bunch compression systems that reduce
bunch-length and thus increase charge density.

Our contribution to this field is the implementation of
a fast 3D space-charge routine in the widely used General
Particle Tracer (GPT) code [4]. It calculates the electro-
static potential by means of a multigrid Poisson solver on a
non-uniform mesh. The space-charge model is written such
that it can be used for injector design and subsequent accel-
eration to the GeV range, during a single run. This is ac-
complished by employing a very flexible multigrid Poisson
solver, tailor-made for anisotropic meshes with extreme as-
pect ratios to cover all parts of the acceleration process [7].

An efficient distribution of mesh lines is still an open
problem. Although the recent meshing technique works
just fine for most ’normal’ bunches, it is not optimal for the
more exotic shapes such as after the DESY compression
system. This paper presents first results of a new meshing
strategy, based on wavelet decomposition of the discretized
charge density function.
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WAVELET APPROACH

The current version of the 3D space-charge model uses
a non-uniform meshing strategy based on the projected
charge density to distribute the mesh lines. Bunches with
very high or low aspect ratios require an improved mesh
where additional mesh lines take care of discontinuities in
the particle distribution. A well-established tool for the de-
tection of such discontinuities is the wavelet decomposi-
tion. We give here only a short overview of the wavelet
theory. Details can be found for instance in [1].

The main idea of a wavelet decomposition is to split a
function f (in our application it is the space-charge den-
sity ρ) into a smooth part and details of a certain ampli-
tude, the wavelet part [1]. This decomposition process is
described by means of a multiresolution analysis (MRA). A
MRA is defined as a nested sequence of closed subspaces
Vm ⊂ L2(R) (L2(R) is the space of square integrable func-
tions over R) of the form

{0} ⊂ · · · ⊂V2 ⊂V1 ⊂V0 ⊂V−1 ⊂V−2 ⊂ ·· · ⊂ L2(R)

with the properties

⋃

m∈Z

Vm = L2(R),
⋂

m∈Z

Vm = {0},

f (x) ∈Vm ⇔ f (2mx) ∈V0, x ∈ R.

Further, there is a function ϕ∈ L2(R), the so-called scaling
function, such that the integer translates ϕ(x− k) (k ∈ Z)
form a Riesz bases of V0, i. e.

V0 = span{ϕ(x− k), x ∈ R, k ∈ Z} ,

A ∑
k∈Z

c2
k ≤

∥∥∥∥∥∑
k∈Z

ckϕ(x− k)

∥∥∥∥∥

2

L2

≤ B ∑
k∈Z

c2
k

for all {ck}k∈Z with ∑k∈Z c2
k < ∞ and for positive constants

A and B. Thus, the spaces Vm can be generated by scaled
versions of ϕ which are given by

ϕm,k(x) := 2−m/2ϕ(2−mx− k) , k,m ∈ Z,x ∈ R.

Now, the wavelet space Wm is introduced as orthogonal
complement of Vm with respect to Vm−1, i. e.

Vm−1 = Vm

⊕
Wm, Vm⊥Wm.

For every MRA there exists a wavelet ψ, the translates and
dilatations of which form an orthonormal basis of Wm:

ψm,k(x) := 2−m/2ψ(2−mx− k) , k,m ∈ Z,x ∈ R.
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The wavelet decomposition of a function f ∈ L2(R) re-
quires first an approximation of f in Vm by means of an
orthogonal projection Pm f with

Pm f = ∑
k∈Z

cm
k ϕm,k,

where the coefficients cm
k are given by cm

k =
∫

R
f ϕm

k dx. Due
to the decomposition Vm = Vm+1

⊕
Wm+1 the projection

Pm f can be split as follows

Pm f = Pm+1 f +Qm+1 f

= ∑
k∈Z

cm+1
k ϕm+1,k + ∑

k∈Z

dm+1
k ψm+1,k.

The projection Pm+1 f represents the smooth part of f and
Qm+1 f the details with respect to Vm.

The three dimensional case can be considered as tensor
product. Let Pm,x, Pm,y und Pm,z be the approximation with
the scaling function in x-, y- and z-direction, respectively.
The wavelet parts are analogously denoted by Qm,x, Qm,y

and Qm,z. Than, the decomposition of f ∈ L2(R3) has the
form

Pm,zPm,yPm,x f = Pm+1,zPm+1,yPm+1,x f

+ Pm+1,zPm+1,yQm+1,x f

+ Pm+1,zQm+1,yPm+1,x f

+ Pm+1,zQm+1,yQm+1,x f

+ Qm+1,zPm+1,yPm+1,x f

+ Qm+1,zPm+1,yQm+1,x f

+ Qm+1,zQm+1,yPm+1,x f

+ Qm+1,zQm+1,yQm+1,x f .

Here Pm+1,zPm+1,yPm+1,x f is the smooth part of f and all
other terms with a wavelet part are regarded as representa-
tion of details. The wavelet coefficients are large at loca-
tions with a lot of detailed information, for instance discon-
tinuities. Here additional mesh lines have to be added. The
goal of these approach is, that we can start the mesh cal-
culation with a relative small number of mesh lines using
the recently implemented adaptive meshing strategy. By
means of the wavelet decomposition mesh lines are only
added at locations where a refinement is necessary. More
detailed we have applied the following scheme:

The Wavelet Meshing Algorithm

1. Compute the mesh line distribution for a relatively
coarse grid following the distribution of the particles
and calculate the space-charge density ρ at the grid
points.

2. Calculate the wavelet decomposition of f = ρ.

3. Add mesh lines at locations with large wavelet coeffi-
cients of the following parts:

• mesh in x-direction: Pm+1,zPm+1,yQm+1,xρ,

• mesh in y-direction: Pm+1,zQm+1,yPm+1,xρ,

• mesh in z-direction: Qm+1,zPm+1,yPm+1,xρ.

NUMERICAL RESULTS

The model of very low or high aspect ratio bunches is a
cylindrically shaped bunch with an aspect ratio A given by
A = R/γL, where R denotes the Radius, L the length of the
cylinder and γ the Lorentz factor. With this definition high
aspect ratio bunches have a pancake shape and low aspect
ratio bunches have a cigar shape. Assuming a uniform par-
ticle distribution it is shown in [5] that the electrical field of
those bunches are highly nonlinear with sharp peaks at the
edges of the bunch.

In this paper we present numerical results from a cigar
shaped bunch with A = 0.01 containing 10,000 macro-
particles which are uniformly distributed. The wavelet de-
composition has been performed with Haar wavelets. The
adaptive non-uniform mesh with 33x33x33 mesh lines cal-
culated following the particle distribution is presented in
Figure 1. Figure 2 shows the wavelet mesh which has
now 45x45x41 mesh lines. Corresponding to large wavelet
coefficients mesh lines are added transversally inside the
bunch, while longitudinally mesh lines are mainly added at
head and tail of the bunch.
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Figure 1: The discretization of a cigar shaped bunch ((x,z)-
plane): grid with 33x33x33 mesh lines distributed follow-
ing the particle distribution.
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Figure 2: The discretization of a cigar shaped bunch ((x,z)-
plane): wavelet mesh with 45x45x41 mesh lines.

Figures 3 and 4 show the distribution of the particles
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with relative error of the electric field greater than 0.1. Al-
though the particles have uniform distribution the particles
with large errors are located at the edges of the bunch and
here for the cigar shaped bunch mainly at head and tail of
the bunch. On the wavelet mesh only 308 particles with an
error greater than 0.1 remain. Compared to 952 particles on
the original grid this number is reduced enormously. This
effect is achieved with the refined grid at head and tail of
the bunch (see Figure 2).
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Figure 3: Cigar bunch with A = 0.01: Particles with rela-
tive error of the electrical field > 0.1 for a 33x33x33 mesh.
Transversal direction (top), longitudinal direction (bottom).

CONCLUSIONS

The fast calculation of 3D space-charge fields requires
not only an efficient Poisson solver but also an adaptive
mesh with as few mesh lines as possible and as many mesh
lines as necessary. Up to now the choice of an appropri-
ate discretization is an open problem. In this paper we
have investigated a new meshing technique based on the
wavelet decomposition of the space charge density. This
strategy allows to start the calculation with a relatively
coarse mesh that follows the space-charge density. This
mesh is than further refined only at distinct locations de-
termined by means of the wavelet meshing algorithm. A
main goal of the algorithm is that the wavelet coefficients
detect discontinuities of the space charge density. Thus the
wavelet mesh provides an improved approximation espe-
cially of bunches with very high or very low aspect ratio.
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Figure 4: Cigar bunch with A = 0.01: Particles with relative
error of the electrical field > 0.1 for a wavelet mesh with
45x45x41 mesh lines. Transversal direction (top), longitu-
dinal direction (bottom).
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