
A SOLVER FOR THE GENERAL PARTICLE TRACER PACKAGE

S.B. van der Geer, M.J. de Loos, Pulsar Physics,
De Bongerd 23, 3762 XA Soest, The Netherlands

Abstract

The General Particle Tracer (GPT) code has been
extended with a multi-dimensional optimizer and solver
to automate the final stages of a design process. The new
solver can be used for all GPT simulations, including 3D
space-charge and particle-wave interaction. The internal
algorithms and two examples are presented in this paper.

1 INTRODUCTION
GPT has become a well-established platform for the

design of accelerators and beam lines worldwide [1,2].
Starting from the first release, GPT has been capable of
scanning any parameter and plotting the results.
However, because an actual design typically involves
many parameters and simultaneous constraints, it can be
quite time consuming to find a solution using the scan
utility. To further assist in the design process, a new
solver has been created.

GDFsolve is a multi-dimensional root-finder and
optimizer that can be used as a “driver-program” for all
GPT simulations. It tries to solve or optimize any number
of constraints on beam parameters by varying variables
used in the GPT inputfile. The beam parameters are
calculated by standard GPT data-analysis, allowing both
built-in and custom analysis routines. The described
algorithms allow a non-equal number of variables and
constraints as well as external boundary conditions for all
variables.

2 THE ROOT-FINDER
GDFsolve used as root finder tries to find a simultaneous
solution to the following set of non-linear equations:

�

�

�

0),,(

0),,(

2212

211

=−
=−

ftxxf

ftxxf t
[1]

Or in vector notation:

0ftxf =−)( [2]

where f is a function of variables x and ft is the target
value. When the dimensions of f and x are equal, a
relatively simple solution can be obtained by a first order
estimate for a new trial xn+1 based on previous guess xn:

))(( n
1

n1n xfftMxx −+= −
+  where 

j

i
ij xd

fd
M = [3]

Iterating the above procedure is known as
multidimensional Newton-Raphson [3] and works very

well in the vicinity of a root. In any number of
dimensions the derivative of the function is extrapolated
to produce the next trial as shown in Figure 1 for 1D.

Figure 1: Typical 1D Newton-Raphson iterations.

There are a number of problems with this approach:
• Typical variables x can have very different scaling.
• The Jacobian matrix M can not be evaluated directly

and must be estimated numerically by a finite
difference approach 

jiij xfM ∆∆≈ .

• In a large number of situations basic Newton-
Raphson sends the solution to outer space or does not
converge at all.

• Not all matrices M can be inverted. This is obvious
when the number of variables and the number of
constraints are not equal. The same problem arises
when one variable does not have an effect on f, or
when one constraint is not affected by changing x.

• Some variables are bounded by external constraints
such as existing hardware, budget restrictions or the
location other beam line components.

• The number of function evaluations required to
obtain M is equal to the number of free parameters.

Solutions to these problems are presented in the
following subsections.

2.1 Scaling and initial stepsizes

To avoid large truncation errors when the matrix df/dx is
inverted, it is made dimensionless by dividing both f and
x by a typical set of scale-factors: df and dx respectively.
To simplify the equations we directly subtract the target
value ft from f such that the new function F must be zero
at the solution, leading to the following set of equations:



( )

( ) dxxFMxx

xFdxxFXFM

dxxX

dfftxfxF

)(

)()(

/)()(

0
1

1
−

+ −=
−+=∆∆=

=
−=

NN

NN

[4]

When the variables are properly scaled, the finite
difference step to obtain M can be chosen as ∆X=1.

2.2 Backtracking

One of the problems with the proposed scheme is that
it can send a solution to infinity when the first estimate of
x is not sufficiently near a root in F. A related problem
can occur when the sequence simply does not converge.
Proper convergence is monitored by testing a reduction in
the length of F after every step:

)()1()( 1 nn xFxF α−≥+
[5]

When [5] is not satisfied with a typical α of a few
percent this indicates that the used step is too large. The
stepsize is reduced by a factor of 2, for three iterations if
necessary, in a final attempt to find a smaller F.

2.3 Singular Value Decomposition

Instead of inverting the Jacobian M, Singular Value
Decomposition is used to write the matrix as the product
of three matrices:

Tww VUM ⋅⋅= ),2,1diag( � [6]

where the columns of V define an orthonormal set of
directions of the variables Xi and the columns of U define
the corresponding change in the constraints Fi. The
diagonal matrix containing wi, the singular values, defines
the scaling between these two. Once the Singular Value
Decomposition is calculated, inverting M is simple:

Tww UVM ⋅⋅=− ),/1,/1diag( 21
1 � [7]

A relatively small wj indicates a change in F that
requires a very large change in X. Typically, such large
steps lead you away from the solution rather than put you
on top of it. Therefore the pragmatic approach is simple:
Because you can hardly change F in a direction of small
wi, typically between 10-2 and 10-6, X is kept constant in
the corresponding direction. An additional advantage of
the SVD algorithm is that the direction information can
be used in a clear diagnostic message to the user.

When M is not square, in the case of over- and under-
constrained systems, the matrix U is not square but the
algorithm still functions properly.

2.4 External boundary conditions

In many design scenario’s, the variables xj can not be
chosen freely. They are restricted by boundary conditions
such as the location of other beam line components.
When a new trial value xn+1 lies outside the hypercube of
boundary conditions, an attempt is made to move it inside
by changing xn+1 in the nullspace of M, see Figure 2:

Vxx ⋅+← ’ [8]

where only the columns of V corresponding to small wi

are used in V’. The additional unknown vector λ is
solved from: Vxxb ⋅+= ’’  where V’’ contains only the
rows of V’ corresponding to the component of x that
must be moved into the boundary hypercube, given by a
corresponding xb.

Figure 2: A boundary condition is solved by moving the
new estimate in the nullspace of M.

2.5 Broydens method

A new estimate of M can be calculated from the
function information from the previously successful step
using the following Broyden [3] update equation:

( )
ii

iiii
NN XX

XXMF
MM

δδ
δδδ

⋅
⊗⋅−

+≈+1
[9]

where δF is the difference in F in a step with size δX.
When the method fails to produce a good

representation of the actual Jacobian the backtracking
algorithm will not find a solution and GDFsolve
reinitializes M by calculating a full Jacobian again.

3 THE OPTIMIZER
GDFsolve as optimizer tries to find the minimum of

any function g(x) by varying all components of x. Our
implementation is very close to the Powell
implementation [3] with the following modifications:
Function evaluations with identical parameters are not
repeated, one-dimensional optimization properly
generalizes to a single line-minimization and relative
termination detection is changed to an absolute value.

 Qualitatively, the algorithm is as follows. The first
steps find the minimum in the direction of the first
component of x. Starting from there, the second
component of x is varied until a minimum is found. This
process is repeated as many times as there are dimensions
in x. To improve the efficiency of the algorithm, the
average direction resulting from these iterations is also
used as minimization direction, replacing the direction of
the largest function decrease. The complete process is
iterated until a stable solution is found. The line-
minimization routine takes larger and larger steps
downhill until a minimum is bracketed. The actual



minimum is found by either parabolic interpolation or
golden section search.

Because not all parameters xi can always be chosen
freely all variables are bounded by a minimum and
maximum value.

4 APPLICATIONS
Both the root-finder and optimizer have been used

extensively for various design problems. A simple
example and a difficult optimization problem are
described below.

4.1 Simple example

This example simulates the focusing of a 50 MeV
parallel beam using two quadrupole lenses as shown in
Figure 3. GDFsolve as optimizer has been used to find
the two required quadrupole strengths by minimizing the
beam-size in both the horizontal and vertical plane.

    
Figure 3: Horizontal and vertical plane of a parallel
50 MeV beam focused using two quadrupole lenses.

Alternatively a zero Courant-Snyder alpha parameter
in both transverse planes, no divergence, can be used as
constraint for the root-finder. The final results are
identical, but as shown in Table 1 the required number of
iterations is very different: The root-finder is far more
efficient compared to the optimizer because only order N
iteration are required compared to N2 for the optimizer.

Table 1: Required number of GPT runs to find the
quadrupole strengths.

Root
finder

Root with
Broyden

Optimizer

2 Variables 7 5 49
3 Variables 9 6 57

When the second quadrupole strength is defined as the
sum of two variables, there is an additional degree of
freedom resulting in a singular-value in the SVD
algorithm. The root-finder with Broyden still finds the
correct solution with a minimum of additional GPT runs.

4.2 FOM-Rijnhuizen FEM

The Fusion-FEM is the prototype of a high power,
electrostatic mm-wave source, tunable in the range 130-
260 GHz [4]. The device is driven by a 2 MeV, 12 A dc
electron beam and is designed to generate 1 MW
microwave power. The part of the system described here
consists of an 80 keV thermionic gun, a 2 MV dc
electrostatic accelerator, and a step tapered undulator.

Figure 4: GPT Simulation of the maximum beam radius
in the first part of the Rijnhuizen FEM for 6 A (red) to
12 A (yellow) with the settings of Table 2.

During initial experiments a much lower current than
12 A is typically used, resulting in different settings for
the first five focusing solenoids. GDFsolve has been used
[5] to find these settings automatically, taking all non-
linear space-charge forces and particle-wave interaction
in the undulators into account. First the beam-entrance
criteria for best beam transport in the undulators are
obtained by minimizing beam radius and divergence in
the undulators. The thus obtained beam conditions and a
number of intermediate sizes are subsequently used as
constraints for the root-finder to solve for the currents
through the first five solenoids, see Table 2. The resulting
maximum beam radius is shown in Figure 4.

Table 2: Settings for the first five solenoid of the
Rijnhuizen-FEM as function of beam current.

6A 8A 10A 12A
Is01 8.40 8.73 8.91 9.02 A
Is02 13.69 13.57 13.26 13.11 A
Is03 14.55 14.41 14.86 16.74 A
Is04 8.02 8.09 8.68 9.57 A
Is05 14.06 14.43 15.83 15.96 A

5 CONCLUSION
GDFsolve is a valuable tool to automate GPT

simulations in the final stages of a design. It efficiently
solves non-linear multi-dimensional optimization and
root-finding problems, while properly taking care of
over- and under-constrained systems and boundaries.

The current status of the GPT project can be found on
the web at www.pulsar.nl/gpt

6 REFERENCES
[1] S.B. van der Geer, M.J. de Loos, Proc. 1998 Eur.

Part. Acc. Conf., Stockholm, (1998) pp. 1245.
[2] GPT User Manual, Pulsar Physics, Flamingostraat

24, 3582 SX Utrecht, The Netherland
www.pulsar.nl

[3] W.H. Press, et al., Numerical Recipes in C,
Cambridge Univ. Press, 2nd edition, (1992).

[4] W.H. Urbanus, et al, Nucl. Instr. and Meth. A375,
(1996) p. 401.

[5] C.A.J. van der Geer, Optimum Transport in FEM-III,
(2000).


